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Problems with metric-teleparallel theories of gravitation 

Wojciech Kopczyhkit 
Institute of Theoretical Physics, University of Cologne, D-5000 Cologne 41, West 
Germany 

Received 20 March 1981 

Abstract. A general Lagrangian formulation of the metric-affine, metric compatible 
theories of gravitation is given. The applicability of the metric-teleparallel geometry to 
gravitation is considered. It is pointed out that a teleparallel theory with the Lagrangian 
usually accepted in the literature leads to a non-predictable behaviour of torsion. A new 
choice of the Lagrangian is proposed. 

1. Introduction 

A theory of space-time based on the metric-teleparallel geometry was considered for 
the first time by Einstein (1928, 1929) in his attempt to create a unified theory of 
gravitation and electromagnetism. Nowadays theories of this kind have returned to 
physics following some different patterns of argumentation. 

Hehl eta1 (1978) constructed a theory of gravitation (and, as they suggest, of strong 
interactions) based on the metric-torsion geometry following the scheme of the gauge 
theories. Their theory resembles the gauge theories used in microphysics, but has some 
distinct features. The linear connection is interpreted as the gauge potential cor- 
responding to rotations, whereas the frames correspond to translations. The curvature 
and the torsion are analogous to the field strengths which correspond to rotations and 
translations respectively. The geometry is described by the metric tensor g and the 
linear connection o or, equivalently, since the linear connection is metric compatible, 
by two tensor fields: the metric g and the torsion Q. A Lagrangian formulation of this 
class of theories is given in 0 4. 

In a similar way as in electrodynamics, where the electric current is the source of the 
electromagnetic field, in the theory of Hehl et a1 the spin of matter fields is the source of 
the curvature and their energy-momentum is the source of the torsion. In macrophysics 
the spin in most circumstances vanishes. Thus, as the authors suggest, the macrophysi- 
cal curvature will vanish too. Therefore, in macrophysics we would have a metric 
compatible connection with vanishing curvature and non-vanishing torsion. The 
macrophysical theory of gravitation would be a theory based on the teleparallel 
geometry considered as a limit of the full microscopic theory of gravitation. The 
detailed exposition of this line of reasoning can be found in Hehl(l979) and Hehl et a1 
(1980). A similar theory, but based on a different Lagrangian, was constructed by 
Wallner (1980). 
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Putting the spin equal to zero in the equations of Hehl et a1 does not force the 
curvature to vanish. Moreover, if we simultaneously let the spin and the curvature be 
zero in these equations, we get a contradiction, since then the torsion and in turn the 
energy-momentum tensor must also vanish. The contradiction can be avoided if in 
addition we turn a physical constant into zero. But, if this is the only way to derive the 
macrophysical field equations, I doubt the validity of the limiting hypothesis. 

Hayashi and Shirafuji (1979) also took the point of view of the gauge theories, but, 
instead of the PoincarC group, they considered the translation group as the gauge group 
of gravitation. These authors, in contrast to Hehl et ai, applied the teleparallel 
geometry to microphysics too. This is also the point of view of this paper. 

Moller (1978) constructed a 'tetrad' theory of gravitation guided by the idea of 
averting the singularities inherent in the Einstein theory. As pointed out by Meyer 
(1981), his theory is formally the same as the teleparallel 'limit' of Hehl et al. 

Schweizer and Straumann (1979), Nitsch and Hehl (1980) and Schweizer et a1 
(1980) showed that from the observational point of view the teleparallel theory is 
practically indistinguishable from the Einstein theory. 

In the present paper we conclude that in order to have a meaningful metric- 
teleparallel theory we should consider the interaction between gravity and spinning 
matter. The teleparallel field equations usually considered in the literature do not give 
full information about the teleparallel connection and, moreover, lead to inconsisten- 
cies in the non-vacuum case. Therefore, their modification is proposed. 

The principal motivation for considering the metric-affine theories instead of the 
Einstein theory was to grant the spin independent dynamical meaning. This motivation 
is lost in the metric-teleparallel theories. On the other hand, the teleparallel geometry 
is simpler than the general affine geometry and this simplicity may be helpful in 
analysing such properties of the gravitational theory based on the Lagrangian (46) as 
renormalisability and the singularity problem. 

2. The metric-affine geometry. Notation (Trautman 1972) 

The metric-affine geometry is based on the metric field g and the linear connection W .  

We describe a geometric object as a law which with each local frame of l-forms (8') 
associates a collection (pA)  of differential p-forms, A, B, . . .=1, . . . , N. The type of a 
geometric object is characterised by a transformation law 

between the collections of p-forms corresponding to the frames (8') and (e"), where 
8' = a'.@'', 

Let u: GL(4, R) + GL(N, R) be a representation of the group CL(4, R), a ( a )  = 
(aAB(a ) ) ,  and a = (ai i ) .  If the transformation law is 

then (PA is called a p-form of type U. Examples are the metric tensor gii ( p  = 0) and the 
frames 8' themselves ( p  = 1)- in both cases u is a tensorial representation. 

The infinitesimal change of frames 

88' = 81' - 8' = ( 2 )  
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(or a ', = Sii + E ',) induces the corresponding variation of the forms (PA 

(3) B j  i 6(PA=-(PBa Ai6 j 

where 

provided (PA as geometrical object is kept fixed. 
The transformation law for the connection 1-forms wli 

(4) aikw'kj = w i k a  k ,+da',  

is different from the transformation law of p-forms of type a (1). If (PA is a p-form of 
type a, then its covariant exterior derivative 

D(pA=d(PA 4- U B i i W i j  A (PB ( 5 )  
is a ( p  + 1)-form of the same type a. 

Examples are the torsion 2-form 

0' =De' =de '  + w i i  A 6' (6)  

and the covariant derivative of the metric tensor 

Dg..=dg..-wk.g 11 I kl . - w k .  igik, 

If (PA is a 0-form, we write 

D Q A  = 8'viQA. 

If we wish to extend the covariant differentiation to the Dirac field, we should 
impose the metric condition 

Dgij = 0. (7) 

With this condition the geometry is based on two tensor fields: the metric gij and the 
torsion aijk (determined by 0' = $Qijk6" A e k ) ,  since the connection is given by 

" ', .="  ", :(ai,, -k Qk; + Q j k i ) e k  (8) 

where (3 ', is the Levi-Civita connection uniquely determined by the metric tensor. Due 
to the condition (7) the connection on the bundle of linear frames (with the structure 
group GL(4, R)) can be reduced to the bundle of orthonormal frames (with the Lorentz 
group as a structure group). We shall assume the metric condition (7) throughout the 
paper. 

The curvature 2-form aii which appears in the Ricci identity 

D'(P~ = aBAia'i A ( p B  

is given by 
k 1  k i  aij = dw'j + O i k  A W j = 2R'jkie A 6 . 

It will be useful to introduce the defect 1-form 

= w l .  - ; l .  = ' k  e I i i i k  

(9) 

which can be expressed in terms of the torsion by means of equation (8). The inverse 
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relation is 

O' = xil  A el. 

So I I  = DE I,. 

(10) 

From equation (4) we obtain that the infinitesimal transformation of frames (2) leads to 

(11) 

3. The metric compatible teleparallel geometry 

The metric compatible teleparallel geometry is a specialisation of the metric-torsion 
geometry for which the curvature vanishes, a', = 0. This requirement is, in a sense, 
opposite to the requirement of vanishing torsion, which is characteristic for the 
Riemannian geometry. The metric compatible teleparallel geometry, besides the 
description in terms of g,, and w',, can be described locally in a different manner. 

Let (6 ' ) ,  be an orthonormal frame of the cotangent space at the point m of 
space-time. Let M be a simply connected neighbourhood of the point m. Then the 
parallel transport of (e ' ) ,  along the curves lying entirely in M does not depend on the 
curves since the curvature vanishes and each two curves are homotopic. Thus ( O ' ) m  
generates the frame field (6 ' ) ,  on M. Starting with another orthonormal frame (e"),, 
we obtain the frame field (e"), on M related to the previous one by a constant Lorentz 
transformation 

0' = A'l/"' A', =constant. (12) 

So, the geometry allows us to determine a class [(e'),] of OT (orthonormal teleparallel) 
frames on M related by the equivalence relation (12). 

Inversely, such a class of frames determines the teleparallel metric compatible 
geometry on M. The metric tensor on M is then defined by 

(13) 

and does not depend on the choice of a member (e'), of the class [ ( 1 9 ' ) ~ ] .  The metric 
compatible flat connection is defined by the condition 

g = g,,e' 0 8' ( g , )  =diag(+l, -1, -1, -l), 

w ' ,  = 0 

for each member of this class. 
If we want to extend this description of the geometry to the whole manifold, we 

should cover it by simply connected open sets M,, on each of them determine the class 
of the oTframes [(6'),,] subject to the condition (12), and make sure that this condition 
holds also for members of two different classes associated with Ma and M p  on their 
intersection. 

Some authors (cf Robertson 1932) use another definition of the teleparallel 
geometry. That definition requires a path-independent parallel transport law between 
each two distant points. That requirement justifies the name 'teleparallel geometry'. 
The definition adapted here is more general: it is equivalent locally, but not globally, 
since the parallel transport is path dependent. In particular a global OT frame field may 
not exist. 

To give an example, consider the cylinder with the metric 

ds2 = dz2 + d q 2  
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and the linear connection given by 

w', = -U', =CY dlp (Y = constant, 

wqv = 0'' = 0. 

One can easily check that the connection is metric compatible and flat. The equations of 
the parallel transport around a horizontal circle for the vector U = (U', U') are 

du'ldlp + QV' = 0 dv"/dlp -(Yv'@ = 0. 

So, if (Y is not an integer, the vector U does not return to the original position after 
passing the circle. This shows that an OT frame cannot be constructed all over the 
cylinder. 

4. Variational principle for the metric-torsion theories 

4.1. The gravitational Lagrangian 

The gravitational field in this class of theories is described by the metric tensor and the 
metric compatible connection, Dgi j  = 0. We shall use in this and the next sections 
exclusively the (local) orthonormal frames (e ' ) .  Then, the metric tensor has the form 
(13) and the connection 1-forms are skew symmetric, wij = -wji. The curvature 2-forms 
are skew symmetric too, nij=-nji. With this fixed choice of gij, the geometry is 
determined by 8' and wii. We assume that the Lagrangian 4-form K for the pure 
gravitational field is a function of e', mij ,  de', duii. Then, due to the identities (6) and 
(9), we can write 

K = K(8', wij ,  0', aij). 
I define the (left) derivatives of K with respect to its arguments by the formula 

The derivatives aK/awii and aK/anij are skew symmetric by definition. 
Transforming the formula (14), we obtain 

where 

ei = -aK/ae' -o(aK/a@') 

C/ =aK/aw: .+2ej~a~/a0 '+D(a~/an '~)  

is the Einstein 3-form and 

is the Cartan 3-form. 
The equations 

ei = 0, (15) 

c /  = 0, (16) 
are vacuum gravitational equations resulting from the variational principle S K = 0. 
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The Lagrangian 4-form K should depend only on geometry and not on the choice of 
an orthonormal frame (8'). So, if we perform a Lorentz rotation 6'' = A',B' accom- 
panied by the corresponding change (4) of utJ, the 4-form K should remain invariant, 
K' = K. The coefficients of an infinitesimal variation of frames determined by equation 
(2) are in this case skew symmetric, E,,  = -E,,. By means of the formulae (3) and (1 1) we 
obtain 

SK = E I, (8' A e, - &') + id( E ', K/ao I ,)  = 0. 

Since E[ , , ]  and de[,,, have arbitrary values at each point, we obtain two identities 

aKlaw', = 0 ,  (17) 

Dc,, = 0, A e, - 8, A e,. (18) 
According to the identity (17) the Lagrangian 4-form K does not depend explicitly 

on U',. The identity (18) shows that the vacuum field equations (15) and (16) are not 
independent. The covariant exterior differential of the left-hand side of equation (16) 
vanishes because of equation (15), even if equation (16) is not satisfied. 

We require next that the Lagrangian K be invariant under diffeomorphisms, since 
otherwise K would be explicitly position dependent. If h is a (local) diffeomorphism of 
space-time, then (Schweizer 1979) 

(19) 

Consider now a local one-parameter group of diffeomorphisms {h,} .  Substituting h, 
instead of h into formula (19) and differentiating with respect to t at t = 0, we obtain 

K(h*@', /I*@', h*n',) = h*K(B', a', fl',). 

for the vector field 2 generated by {h,}. 
Using the formula 

S 'w=d(Z J w ) + Z  J d o ,  
Z 

one can transform the identity (20) to the form 

A + d B = O  

where both forms A and B are linear in 2. Since Z and derivatives of its components 
are pointwise arbitrary, we conclude that A and B should vanish. As a result of a long 
but straightforward calculation, using the identity (18), we obtain the explicit expres- 
sions for A and B :  

(21) A = ( Z  i O')De, - ( Z  J 0') A e, + f (2  i A c,' = 0,  

We have 

z J e' = z', Z J 0' = Z'Q',, z J a', = ZkRIJk, 

where the l-forms Q', and R1,k are defined by 

Q', = Q ' , k e k ,  R 'Ik = R ' j k l e  '7 
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and let 

z _I K =z'K, 

be the definition of the 3-forms Ki. Then, we can use the fact that the identities (21) and 
(22) hold for every Z and rewrite them as 

(23) Dei=QfiAej -zRkihc j ,  1 j  k 

The identity (23) corresponds to the contracted Bianchi identities of the Einstein 
theory, figj = 0. It shows that by covariant differentiation of the first field equation ( 1  5 )  
we obtain an equation algebraically dependent on equations ( 1 5 )  and (16). The identity 
(24) can be transformed into an equivalent definition of the Einstein 3-forms, 

4.2. The non-gravitational Lagrangian 

The p-form of type U (QA)  will be the model of a field interacting with gravitation. We 
shall not specify whether QA is of bosonic or fermionic character. This 'unified' 
treatment is possible because of the metric condition, Dgij = 0. 

The Lagrangian 4-form for the interaction will be 

K + L  

where L is the matter Lagrangian which depends on 

QA, dQA, e', W i j .  

Using equation ( 5 ) ,  we can also write that 

L = L(QA, DQA, Oi,  wij) .  

Varying L, we obtain 

SL = SQA A L A  - 60' A ti + i h i j  A Si' + d(SQA A aL/aDQA) 

where 
L A  = aL/aQA - (-l)'D(aL/aDQA), 

Thus the principle of least action, S (K + L)  = 0,  implies that 

L A  = 0, 

ti and s/ are 3-forms of material energy-momentum and spin respectively. 
By the same method as for the gravitational Lagrangian K, we can investigate the 

consequences of the invariance of the matter Lagrangian L under the Lorentz rotations 
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and diff eomorphisms. The invariance under the infinitesimal change of an orthonormal 
frame, 88' = leads to the equation 

SL = E I1 (e' A t, - uBk,cp~ A L A  - $Ds,') + id(& I 1  aL/ao'l) = 0 

from which we obtain two identities: 

aL/aw', = 0, (28) 

DS,, = fl, A ti - 8, A t, - 2 a B A [ ~ j 3 q B  A L A  (29) 

Because of equation (28) the matter Lagrangian L does not depend explicitly on the 
connection. If the non-gravitational field equations are satisfied, then equation (29) 
becomes the covariant conservation law for angular momentum. 

The invariance of the matter Lagrangian L under diffeomorphisms leads to the 
equation 

Equation (30) can be transformed into the form 

A + d B = O  

where 

A = (2 J e')Dti - (2 J 0') A ti + $(Z J Cl',) A s i  
+ ( - I )~ (Z  J (PA) A D L ~  + (Z J ~ c p ~ )  A L* = o 

and 

B = (Z i cpA)  A aL/acpA + (Z A DqA) A aL/aDcpA - (Z J e') A ti - Z  J L = 0. (32) 

When cpA is a 0-form, from equations (31) and (32) we obtain the identities 

where Li is defined by Z J L = ZiLi. If the non-gravitational field equations are 
satisfied, then equation (33) becomes the covariant conservation law of energy- 
momentum. It follows from the identities (18), (23), (29) and (33) that the equations 
resulting from covariant differentiation of the gravitational field equations (26) and (27) 
are algebraic consequences of the field equations themselves. The identity (34) means 
that the energy-momentum 3-form ti is 'canonical'. Namely, defining the tensor ti, by 
ti = *8'fji, one obtains for tji the well known formula for the canonical energy-momen- 
tum tensor. 

The electromagnetic field (both in the linear and nonlinear theory) is of special 
interest. The electromagnetic gauge invariance requires that the electromagnetic 
potential should be treated as a scalar 1-form cp = viei rather than as a covector 0-form. 
The Lagrangian L is a function of 8' and of the field strength 

F = dcp = $FiiOi A 8'. 

In this case the spin 3-forms sij vanish and equation (32) leads to 

ti = F~ A aL/aF - L~ 
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where F, =F@'. This formula, though formally similar to formula (34), gives the 
symmetrical, gauge-invariant energy-momentum tensor tii rather than the canonical 
one. 

The present derivation of the identities resulting from the invariance of the matter 
and gravitational Lagrangians is partially based on the results obtained independently 
by Schweizer (1979, 1980) and Adamowicz (1980). These identities in the framework 
of the Poincar6 gauge gravitational theories were obtained also by means of other 
methods by Hehl et a1 (1978, 1980) and Szczyrba (1979). 

5. Equations of the teleparallel theories 

We attempt now to describe the gravitational field in the framework of the teleparallel 
metric compatible geometry. The gravitational Lagrangian will be a function of the 
orthonormal frame and the torsion, K = K(B', @'). We cannot repeat directly the 
variational procedure of the previous section, since the vanishing of the curvature, 
aii = 0, imposes a constraint on the variation of the connection 1-forms wii.  To include 
this constraint in the variational formalism, we may choose one of the two methods 
described below. 

The first is the method of Lagrange multipliers (cf Kopczyhski 1975). The total 
Lagrangian K + L is replaced here by the Lagrangian 

K + L + $A/ A aii 
where the 2-forms A /  (Aii = - A j i )  are the Lagrange multipliers. From the corresponding 
principle of least action, by the variation with respect to pA, 8' and mii, we obtain the 
equations 

LA = 0, (35) 

(36) 
c /  + s/ = -DA/, (37) 

e .  = -t. 

respectively. The variation with respect to A /  gives the equation a\ = 0. 
It should be stressed that all identities derived in the previous section are valid also 

in the teleparallel case, provided we substitute aii = 0. By means of the identities (18) 
and (29) one can show that the integrability condition for equation (37) 

D (c /  + s/) = 0 

is satisfied if equations (35) and (36) are satisfied. Therefore equation (37) can be 
locally solved for the Lagrange multipliers A/. Thus the only role of equation (37) is to 
determine (non-uniquely) the Lagrange multipliers. 

As we know from 0 3, the OT frame 8' determines the teleparallel metric compatible 
geometry. Thus a more straightforward method of deriving the field equations is to use 
the OT frame as the unique variational variable corresponding to the gravitational field. 
For such frames the torsion coincides with the object of anholonomity, 0' = de'. The 
total Lagrangian K + L depends on e', pA, and their exterior derivatives. The principle 
of least action leads to equations (35) and (36) written in an OT frame. To write them in 
an arbitrary frame, we should replace the exterior derivative d by the covariant exterior 
derivative D. Both methods imply the same dynamical equations (35) and (36). 



502 W Kopczyn'ski 

In contrast to the field equations in the metric-torsion theories (equations (25), (26) 
and (27)), in the teleparallel theories the spin is not explicitly present in the field 
equations (35) and (36). This is similar to the situation in the Einstein theory; however 
this analogy is not complete, since the canonical energy-momentum tensor fii rather 
than the symmetric tensor serves here as the source of gravitation (cf Rosenfeld 1940). 

In order to have a meaningful metric-teleparallel theory, it is necessary to consider 
spinning matter. For, suppose we take into account the scalar p-form ip only. Such a 
scalar p-form can serve as a general model of non-spinning matter. Then the matter 
field equations (35) take the form 

a ~ / a p - ( - l ) ~  d(aL/a dp)  = 0. 

This equation generically depends on the metric tensor, but does not depend on the 
choice of a teleparallel connection. The same is true for the energy-momentum 
conservation law (33), which in the teleparallel space-time reduces to 

Dti = Ofi  A fj. 

This equation can equivalently be written as 

dti = ( x i i  + Qji) A f i  

or, using equation (lo), as 
k dfi = x i k i 8  A f j ,  

For non-spinning matter the energy-momentum tensor is symmetric, fh A ti = 19, A f k  ; 
thus we obtain the equation 

dti = 0 

which is independent of the choice of the teleparallel connection. Considering non- 
spinning matter only, there is no other method of measuring the torsion than to subtract 
it from the field equations (36), substituting there the values of all other quantities 
measured in advance. Then the only role of these equations would be to provide the 
method to determine certain combinations of the torsion and its derivatives. As a 
physical law, equation (36) would in fact be meaningless. 

On the other hand, considering spinning matter, we should be able to elaborate at 
least a thought experiment determining torsion. One can expect that such an experi- 
ment would be based on equation (38) or, as Adamowicz andTrautman (1975) suggest, 
on the conservation law of angular momentum (29). This law is also torsion dependent, - k k 

DSij - 8j A fi + 8i A fj = X i A s k j  + X j A S j k .  

This would solve the measurability problem posed by Moller (1978). 
Invoking the analogy of the teleparallel theory with Maxwell's electrodynamics, we 

can restrict all possible Lagrangians to those quadratic in the torsion. There exist three 
independent Lagrangians with correct parity (Rumpf 1978): 

K' =$(e' A 0') A *(ej A e,), 
K 2  =$(ei A O i )  A *(6' A Oj ) ,  
K3=1 2 0  i A * @ i .  

Each Lagrangian K will be a linear combination of K', K2 and K3. 
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The Einstein 3-forms corresponding to these Lagrangians are, respectively, 

e l '=D(*(ei  A @ ~ ) A ~ ~ ) - - $ @ ' A * ( @ ~  A O ~ ) - $ * ( O ~ A O ~ ) A ~ ~  A Q ~ ~ + $ Q ~ ~ ' T ~ ~ ~ ~ ~ ~ A O ~ ,  

e2' = ei A D *(e' A - 2 0 ~  A * (e j  A + 2  *(e' A 0 1 )  A Qrijk]ei A ek  +$Qik'Tjkliem A om, 
e3' = -D *ei +;Qii A *ej +aQ 1 j k l  T k l m i e m  A Oj .  

If we require that the weak field approximation gives the same results as those of the 
Einstein theory, we can restrict our considerations to the following one-parameter 
family of Lagrangians (Zaycoff 1929, Moller 1978, Nitsch 1979, Schweizer and 
Straumann 1979): 

K = - K ~ + ~ A K ' .  

For the parameter value A = 1 the Lagrangian K coincides, modulo an exact form, with 
the Einstein-Hilbert Lagrangian 

IZ = f *(ei A e') A hij. 

K = I? +$(A - I)K'+ an exact form 

Thus, we have 

and the gravitational field equations (36) take the form 
1 2 Zi +?(A - l )e  = -ti 

where 
Z.=-e ' .+I  t 2e 2 i 

or, equivalently, 

ci = (Eli  - f & j i )  A *ej .  

(39) 

It is interesting to investigate invariance properties of the gravitational Lagrangian 
K. As in Q 4.1, K is invariant under the Lorentz transformation of the orthonormal 
frames, accompanied by the corresponding passive transformation (4) of the connection 
1-forms (which does not change the connection itself, but only its frame represen- 
tation). However, the formulation of variational procedure which makes exclusive use 
of the OT frames suggests an investigation of the invariance properties of K(#,  de') 
under non-constant Lorentz transformations of the OT frames, 

e iw@li  =A\.gj dAii # 0. (40) 

In general, we have 

K(8", de") # K(O', de'). 

In accordance with the results of Q 4.1, 

K(8',  de') = K(e"', De") 

where D is the covariant differential determined by the OT frame (0 ' )  and (e"') is an 
arbitrary orthonormal frame. Thus the effect of the transformation (40) on K can be 
studied in terms of the resulting transformation of the connection and torsion forms, 
both taken with respect to a fixed frame (e"'). 
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The l-forms of the new connection with respect to the new OT frame (e " )  vanish, so 
the new connection l-forms with respect to the old OT frame (6 ' )  are 

wllr = A k '  dAk,. 

Since the difference AwlJ = wILI - w i J  is a tensorial l-form, the formula 

Awll = ALD Akl 

holds in an arbitrary frame (e"'). Since the metric tensor does not change under the 
transformation (40), we have 

Awl, = Ax',  

and the increment of the torsion 2-form is 

A@' = A x C r  A e"'. 
Some authors (Kaempffer 1968, Cho 1976) require the gravitational Lagrangian 

K(6',  de') to be invariant (modulo an exact form) under the transformation (40) of OT 

frames. This means that only one of the ingredients of the geometry under considera- 
tion, namely the metric tensor, is present in the vacuum field equations. The second 
ingredient-the teleparallel connection-will not influence the left-hand side of the 
vacuum field equations. Therefore the theory which satisfies this requirement, i.e. the 
theory with A = 1, cannot be interpreted as a metric-teleparallel theory. 

The non-vacuum field equations (39) could lead in this case to an inconsistency if the 
matter Lagrangian is connection dependent, as in the case of the Dirac field. This 
inconsistency can be avoided by introducing into the matter Lagrangian L ad hoc the 
Levi-Civita connection GIr instead of the dynamical connection wLJ. From the point of 
view of the formalism considered here it is, however, not allowed since in such a case L 
would be explicitly de '  (torsion)-dependent and the principle of minimal coupling 
would be violated (cf Thirring 1980). The opposite point of view is that of Cho (1978), 
who admits such a violation of this principle in the gravitational gauge theories. 

For A # 1 the Lagrangian K is not invariant under all transformations (40); there 
exist however non-constant Lorentz transformations such that = e" A 0, is left 
invariant. These transformations do not change and, since the duality operation is 
determined by the metric tensor only, K 2  does not change either. The 3-form A@ 

(determined by the axial part of the torsion) transforms according to the formula 

A O H A O - A X ~ ~  A e"' A e"'; 
thus the condition of invariance of reads 

A A 0  = -Axlr A e" A e"J = 0. (41) 

Although the Lagrangian K 2  is invariant under the transformations (40) which 
satisfy the condition (41), the corresponding Euler-Lagrange equations, in general, are 
not. The reason is that in the variational procedure equation (41) plays a role of a 
constraint imposed on the variational variables 6'. Under (40) K 2  transforms like 

(42) 

First performing the variation of the expression (42) and next using the condition (41), 
we obtain 

K 2  H K 2  + A A 0  A 20 + $AA@ A *AA@. 

2 e ++e2' - 2Ax,, A e"' A %0. 
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Therefore, sufficient conditions for the invariance of the empty space field equations 
(39) under the transformations (40) are equation (41) and the equation 

Axi j  A e" A :O = 0. (43) 
The set of solutions of equations (41) and (43) is non-empty; thus the vacuum field 

equations (39) (together with initial data) are insufficient to determine the torsion 
tensor completely. To illustrate this I shall construct an example. Another example of 
this kind can be found in Baekler (1980). 

Consider the Minkowski space 

ds2 = dt2 - dX2-dy2 -dZ2 (44) 
equipped with the common Levi-Civita connection, G i j  = 0. This is of course a solution 
of the vacuum field equations. Consider however in the Minkowski space another 
metric compatible teleparallel connection 

wij = K'j(t) dt 

where Kij = -Kji and Kab = 0 for a, b = 1 ,2 ,3 .  Since then the axial part of the torsion 
vanishes, = 0, we have another solution of the vacuum field equations (39). The 
functions KO,, which determine the torsion field, 

Qoo,(d = Ko,(t), (45) 
are arbitrary functions of the coordinate t. We see that from the knowledge of the 
torsion on the initial hypersurface t = 0 we cannot predict the behaviour of some torsion 
components outside this hypersurface. This unpredictability of the torsion behaviour 
has apparently a geometric character in contrast to the unpredictability of some metric 
components in the Einstein theory. 

The torsion, if it exists, should be a measurable physical quantity, like the metric. 
Therefore, the teleparallel theory described above is principally incorrect. The 
opposite point of view can, however, be found in the literature. Hayashi and Shirafuji 
(1 979) recognise certain mutually different teleparallel geometries as physically 
equivalent. Then, for instance, the solution given by equations (44) and (45) would be 
interpreted as a 'pure gauge'. The Dirac Lagrangian and the Dirac equation are indeed 
invariant under the transformations (40) satisfying the condition (41), since they 
depend only on the axial part of the torsion tensor. The energy-momentum tensor of 
the Dirac field is, however, not invariant under these transformations. Equations (38) 
and (39) are then not invariant under these transformations, which shows that the 
interpretation of Hayashi and Shirafuji is internally inconsistent. Also the Rarita- 
Schwinger equation has not the invariance property considered here. 

To rescue the metric-teleparallel theory one can attempt to modify the field 
equations (39). For instance, one can consider non-quadratic Lagrangians, as was 
suggested by Moller (1978). The simplest way is, however, to consider an admixture of 
the 4-form K 3  to the gravitational Lagrangian, 

(46) 
The Lagrangian (46) has in fact two free parameters, since a combination of the 
parameters A and Y is the gravitational constant (which is chosen in this paper to be 
l h ) .  For v # O  there is no additional invariance of the Lagrangian and the field 
equations will, we hope, have the required evolutional character. If v is sufficiently 
small, then the measurable results of the theory ought to be close to the Einsteinian 

K = AK'+ p K 2 +  vK3.  



506 W Kopczyriski 

values, which would ensure the compatibility of the theory with astronomical obser- 
vations. The analysis of Hayashi and Shirafuji (1979) gives that v can be at most of the 
order It is not clear, however, whether the Lagrangian (46) does not lead to the 
dipole radiation catastrophe. 
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